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1. INTRODUCTION

When going from univariate to multivariate polynomial interpolation,
one can follow the point of view of [HS2] that a point in R=R1

corresponds to a hyperplane in Rd and, correspondingly, attempt to inter-
polate to information given on hyperplanes. It is one message of the present
paper that the efficient way to solve such interpolation problems is
nevertheless via an equivalent problem of interpolation to (derived) infor-
mation given at points. The relevant pointset is obtained as the set of all
0-dimensional intersections of hyperplanes from the set that comprises the
given hyperplanes and d&1 additional hyperplanes in general position.
Interpolation at such pointsets was studied already in [DR].

In [DR, BDR], we considered interpolation problems in which two
polynomial spaces that emerge from box spline theory, P(5) and D(5), are
involved. Usually, one of these spaces is used to determine the interpolation
conditions and the interpolant is sought from the other. In the above-cited
papers, the interpolation conditions are always of Lagrange type or
Hermite type, i.e., we interpolate function values and ``consecutive''
derivative values at these points. Motivated by the recent interesting paper
[HS2] of Hakopian and Sahakian, we study in this paper polynomial
interpolation to data given on certain linear manifolds or flats (for short)
in Rd, all of the same dimension s, and this dimension is held fixed
throughout. The case s=0 reduces to the interpolation problem considered
in [DR].

The collection of s-dimensional flats involved is denoted by Ms(H); it
consists of all s-dimensional intersections of hyperplanes taken from a
given sequence H.

Generically, each M # Ms(H) is the intersection of exactly d&s hyper-
planes, and we call this situation (whether generic or not) the simple case,
and expect, in this case, to match values given at all the flats in Ms(H), i.e.,
Lagrange type interpolation. The examples shown as Cases 1.1�1.3 in
Section 2 are of this type.

In the contrary case (see, e.g., the examples shown as Cases 2.1�2.4 in
Section 2), some M # Ms(H) is the intersection of more than d&s hyper-
planes, and, correspondingly, we would expect to match at such M also
some ``successive'' derivatives, leading to Hermite type interpolation.
However, in contrast to [HS2], we would not demand the matching of all
derivatives up to a certain order. Rather, in a ready generalization of the
approach introduced in [DR], we impose Hermite conditions that can be
shown to be exactly those satisfied, in a suitable limiting process, by a
Lagrange interpolant to data taken from a smooth function. In this way,
the resulting Hermite interpolation is osculatory or ``repeated'' interpolation
in the classical sense.
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Specification of data on flats of dimension s>0 raises the question of
consistency: Since distinct M, M$ # Ms(H) may well have a nontrivial inter-
section, there is the possibility that the information supplied on M and M$
is contradictory on M & M$. In the Lagrange case, this is simply a question
of having the two polynomials, specified on M and M$, respectively,
coincide on M & M$. In the Hermite case, matters are a bit more subtle.
Fortunately, in contrast to [HS2], we are able to reduce all such con-
sistency questions to checking consistency at a certain finite set (namely the
set M0(Hs); see below).

Given that, even in the simple case, the cardinality of Ms(H) is not just
a function of *H, we must also specify a suitable H-dependent polynomial
space from which to interpolate. This was already recognized in [DR]
where the case s=0 of our current problem was settled. In fact, our
approach reduces the general problem to the special case treated in [DR]:
we extract from the given data a discrete (finite) set of Hermite type inter-
polation conditions, and choose the interpolant from a polynomial space
P=Ps(H) which depends only on the sequence H and the number s. We
will not be able to match the information given at all the M # Ms(H) by
some p # P unless the information is compatible with P, i.e., unless the
datum specified on a given M # Ms(H) is taken from some element of P

(with that element, offhand, different from datum to datum).
With this, our main result, Theorem 7.19, states that, for an arbitrary

finite sequence H of hyperplanes and arbitrary consistent and P-compatible
data, there is exactly one element p # P that matches these data.

Our proof of this result is quite technical, and provides, perhaps
unexpected, insights into the structure of the spaces D(5) which play such
a central role in box spline theory (see, e.g., [BDR]). These insights are
contained in Theorem 7.7 which is a consequence of Theorem 7.9, and
in Theorem 7.13. It is our hope that these insights will also find use else-
where.

The paper is laid out as follows. All of our functions hereafter are com-
plex-valued and defined on Rd. In order to simplify the presentation, we
consider first (in Section 5) the simple case, i.e., the Lagrange type inter-
polation that is analysed here. This simplifies almost all aspects of the
analysis: the description of the interpolation conditions, the compatibility
requirements on the interpolation conditions, and the solution we provide
to the interpolation problem. In contrast, the polynomial space that is to
supply the interpolant is the same for the Lagrange and non-Lagrange
problems, hence we need first to introduce and discuss that space, as we do
in (Section 3 and) Section 4.

In Section 2, we illustrate our interpolation problems by treating the case
of three lines in 2-space, and we outline, in Section 3, for the simple case
in some detail the basic idea of our construction and proofs.
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The general interpolation problem is analysed in Section 7. Some simple
facts, concerning D-invariant polynomial subspaces, especially polynomial
ideals and their polynomial kernels, needed there are discussed in Section 6.

The results in this paper were obtained in 1991, in reaction to [HS2].
We delayed publication initially so as not to precede publication of [HS2]
and later because we wanted to follow [HS2] and include also a treatment
of interpolation to information ``at infinity''. However, our results in that
regard are still not complete while, at this time, there are signs of interest
in [HS2] and we feel that, in any case, the present paper is already
substantial enough.

2. AN EXAMPLE

We are given three (straight) lines in R2 and, on each line, a ``univariate''
quadratic polynomial (i.e., the restriction of some quadratic polynomial to
that line), and seek to extend this information to a quadratic polynomial
on all of R2. Of course, we assume that the data are consistent, but the
precise meaning of this depends on the specific circumstances, as discussed
below. In any event, we proceed by choosing an additional line, in general
position, and then constructing the interpolant from point data, derived
from the given data, at all the intersections of pairs of lines (see Fig. 1).

FIG. 1. The seven cases of interpolation to data given on three lines in R2.
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Case 1.1 (General Position). The three given lines are in general
position, meaning that any two have exactly one point in common, and
this point does not lie on the third line.

In this case, a fourth line in general position will intersect each of the
given lines at a point not also on another line, thus giving us a 6-point set
that is well known (see, e.g., [DR]) to permit unique interpolation from
the space 62 of bivariate quadratic polynomials to arbitrary data. In par-
ticular, let p be the interpolant from 62 to the data derived from the given
quadratic polynomials. This requires consistency, in the sense that, at the
point common to two given lines, the corresponding polynomials
prescribed on these two lines have to agree. Then, on each of the given
lines, p reduces to a ``univariate'' quadratic polynomial. That quadratic
polynomial agrees with the original ``univariate'' quadratic polynomial
given on the line, since they agree at three points on that line.

Case 1.2 (Two (But Not Three) Lines Are Parallel (But Not Coincident)).
This is a limiting case of the Case 1.1, reached by rotating one of the lines.

Now our procedure produces only 5 points of intersection, hence inter-
polation from 62 would be underdetermined. In this situation, [HS2]
derive, in effect, information at the point at infinity at which the two
parallel lines intersect. We prefer to interpolate instead from a certain
5-dimensional linear subspace P(5) of 62 . Precisely, 5=[!1 , ..., !4] is a
matrix whose j th column contains a (nontrivial) vector perpendicular to
the j th line, j=1, ..., 4, and P(5) is the linear span of all functions of the
form x [ > j # J (!j } x), with J such that [!i : i � J] spans R2.

In Case 1.1, P(5)=62 . In the present case, however, all elements of
P(5) are necessarily linear in the direction of the parallel lines (which
implies that P(5) is obtained from 62 by the imposition of one linear con-
straint). There is a unique interpolant from P(5) to the derived data at the
five points, provided that the data are compatible with P(5), i.e., provided
the polynomials given on the two parallel lines are actually linear (this is
a special case of the general result in [DR], to be used in the sequel). With
this proviso, the restriction of the interpolating polynomial to a given line
agrees with the given polynomial there since it matches it there at as many
points as are needed, given the degrees involved, to conclude agreement on
the entire line from agreement at those points.

Case 1.3 (Three Parallel Lines). In this case, P(5) (defined as in
Case 1.2) reduces to the 3-dimensional space of all quadratic polynomials
constant in the direction of those three lines. Compatibility of the data now
means that they must be constant on each of those three lines, while con-
sistency is vacuous here (since the lines have empty intersection). With
that, existence of exactly one element of P(5) matching such data is
evident.
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The three cases covered so far are examples of what we call the simple
case; it leads to an interpolation problem of Lagrange type and the reader
only interested in this case may safely skip the rest of this section.

In the nonsimple, or general, case, one has to deal with interpolation to
derivative information as well, derived from the given information (as in
Case 2.1 below) and�or given explicitly (as in Cases 2.2�2.4 below).

Case 2.1 (The Three Lines Intersect at a Common Point, But No Two
Lines Coincide). This is a limiting case of Case 1.1, reached by translating
(but not rotating) one of the lines. In particular, P(5) does not change, i.e.,
it is still 62 for this case. Having the function specified on a straight line
means, of course, that we have also specified, on that line, any derivative
of any order in the direction of that line. Since, on R2, it takes just two
directional derivatives at a point (in nonparallel directions) to specify every
directional derivative at that point, consistency now requires that the three
directional derivatives specified by the data at the point common to all
three lines be consistent. That being understood, the rest is as before, with
the slight complication that the common point is a triple point for inter-
polation from 62 , and is a double point when arguing that the interpolant
from 62 agrees with the given data on each of the three given lines.

Case 2.2 (Two Lines Are Coincident, the Third Not Parallel ). This is a
limiting case of Case 1.2, as we translate (but not rotate) the given lines
suitably, hence P(5) is the same as in Case 1.2. (It is also a limiting case
of Case 2.1, as we rotate one of the lines suitably.)

We now assume given on the double line also the derivative normal to
that line (necessarily a linear polynomial along that line even if we only
knew that it was the normal derivative of some element of 62), hence know
on that line any directional derivative. The only change from the preceding
case is that some points now become double points and that we must (and
can) also verify that the given normal derivative is matched on the entire
double line.

Case 2.3 (Three Parallel Lines, Two Coincident). This is a limiting case
of Case 1.3, as we translate (but not rotate) one of the given lines suitably,
hence P(5) is the same as in Case 1.3. (It is also a limiting case of Case 2.2,
as we rotate one of the lines suitably.)

We now assume given on the double line also the derivative normal to
that line, and compatibility requires (as in Case 1.3) that all data, including
this normal derivative, be constant, making it easy to verify the existence
of exactly one element in P(5) that matches the given data.

Case 2.4 (Three Coincident Lines). This is a limiting case of Case 1.3
(and Case 2.3) as we translate (but not rotate) the given lines suitably,
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hence P(5) is the same as in Cases 1.3 and 2.3. (It is also a limiting case
of Case 2.2, as we rotate one of the lines suitably.)

In this case, assuming the data compatible with this, i.e., constant along
the triple line, we also assume that the first and the second normal
derivative is prescribed at that triple line (as a constant along that line) and
conclude directly that the unique interpolant from P(5) matching the
information at the triple point (picked out by our additional line) matches
the given information on the entire triple line.

In this example, the orthogonal complement of a flat is only one-dimen-
sional. The problem of choosing a minimal set of derivative information to
be specified on a repeated flat becomes significantly more complicated
when data are given on certain s-dimensional flats in Rd for s<d&1.

3. THE BASIC IDEA

Let H be a sequence of hyperplanes in Rd, let 0�s<d, and recall from
the Introduction the collection Ms(H) of all s-dimensional intersections of
hyperplanes from H. We are interested in polynomial interpolation to data
given at all the flats in Ms(H).

For s=0, this is the interpolation problem addressed in [DR]. We
propose to reduce the general case s�0 to the known case s=0 by work-
ing with the larger sequence Hs , obtained from H by adjoining to it s
hyperplanes in general position with respect to it, and then considering
interpolation at all the points in M0(Hs) to data there as derived from the
data given on the flats in Ms(H). In this, we assume that the given data are
consistent, i.e., provide unambiguous information at the points in M0(Hs).
Since [DR] readily provides a suitable interpolant to data on M0(Hs), this
reduces our task to showing that this interpolant does, indeed, match the
data given on the flats in Ms(H).

If the hyperplanes in H are in general position, then M0(Hs) consists of
exactly ( *Hs

d ) points, i.e., the cardinality of M0(Hs) equals the dimension of
the space

6k

of all polynomials of degree �k, with

k :=*Hs&d=*H&(d&s).

More than that, in this case, 6k is well known to contain a unique inter-
polant to arbitrary data given at the points in M0(Hs). In particular, let p
be that interpolant from 6k to data at M0(Hs) derived from the given data.
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Then, assuming that the data are compatible, i.e., that the given datum pM

at a flat M in Ms(H) is the restriction to that flat of some element of 6k ,
our interpolant p from 6k is guaranteed to agree with pM at sufficiently
many points to force its restriction to M to coincide with pM .

In the contrary case, various complications arise that will be dealt with
fully later on. In the remainder of this introductory section, we now discuss
just one such complication, namely the possibility that M0(Hs) consists of
fewer than dim 6k points but still each such point lies in exactly d of the
hyperplanes from Hs . The latter condition characterizes what we call in
this paper the simple case. Already this case will provide the reader with a
good feeling for the nature of the interpolation problem considered and
some of the difficulties overcome by us in solving it.

When *M0(Hs)<dim 6k , we can only interpolate at M0(Hs) from
some subspace of 6k . Of the infinitely many choices possible, we take the
subspace used in [DR], as this permits us to prove (later on) existence and
uniqueness of an interpolant from that space to arbitrary (consistent and
compatible) data given on Ms(H). For a description of that subspace, we
find it more convenient to switch now, from the hyperplanes, to their
normals and associated constants.

Precisely, we think, as we may, of H as having been obtained from a
matrix X, with d rows and no null column, and a corresponding scalar
sequence (*x : x # X ) as the collection of hyperplanes

Hx :=[t # Rd : qx(t)=0]

with

qx : t [ x } t&*x ,

and with x running over the columns of the matrix X. The relation U/X
we take to mean that U is obtained from X by deletion of some (or none)
of its columns. Also, we denote by *X the length of the sequence X, i.e.,
the number of columns of the matrix X. The ordering of the columns of X
is immaterial here. Because of the role such matrices play in box spline
theory, we call them direction sets (in Rd).

With this, we associate with each U/X the following homogeneous
polynomial of degree *U,

lU : t [ `
u # U

(u } t), (3.1)

but write lx instead of l[x] or l[x] for x # X. Further, we introduce the
following subset of 2X,

L(X ) :=[L/X : rank(X"L)=rank X]. (3.2)
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In these terms, [DR] show that (under the assumption that we are in the
simple case with s=0) there is a unique interpolant to arbitrary values on
the set M0(H) from the polynomial space

P(X ) :=span[lL : L # L(X )]. (3.3)

Note that P(X )=6*X&d in case H is in general position (provided that
there are at least d hyperplanes in the sequence). For more information on
P(X ), see Section 4 below.

Now let Y be a sequence of s directions, or, equivalently, a (d_s)-matrix
of directions associated with the s hyperplanes in general position adjoined
to H to obtain Hs , and continue to assume that we are in the simple case,
i.e., each point in M0(Hs) lies in exactly d of the hyperplanes in Hs . Set

Z :=X _ Y.

Then [DR] provides a unique interpolant from P(Z) to arbitrary values
at the points of M0(Hs). We will show below that

P(Z)=Ps(X ) :=P(X ) 6r :=span[ pq : p # P(X ), q # 6r],

with r :=(s&d+rank(X ))+ . In particular, P(Z) only depends on X and s.
Assume now that we have been given consistent data on the flats in

Ms(H), i.e., data

( pM : M # Ms(H))

so that, for every M1 , M2 # Ms(H), the polynomials pM1
and pM2

coincide
on M1 & M2 & M0(Hs). Such consistency is clearly necessary if we are to
construct an interpolant to these data.

For each % # M0(Hs), there exists some basis B/Z such that % # Hx for
every x # B. Since *Y=s, X & B contains some B$ of length d&s. There-
fore, M :=�x # B$ Hx is a flat in Ms(X ) that contains %, hence the derived
datum

a% :=pM(%)

is well-defined. Also, by the assumed consistency, this definition is
independent of our choice of M.

It follows from [DR, Theorem 7.1] (see Theorem 5.11 below) that there
is exactly one element of P(Z) that matches these data (a% : % # M0(Hs)).
To show that, for all M # Ms(H), this element also matches pM on M takes
additional work; see the proof of Theorem 5.10 below. In particular, for
such a conclusion, we need to assume that the given data are X-compatible
in the sense that each pM is the restriction to M of some element of P(Z).
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But the above discussion already makes clear that an interpolant from
P(Z) to any X-compatible and consistent data on Ms(H) is unique.

4. THE SPACE Ps(X )

In this preparatory section, we discuss the polynomial space Ps(X ), to be
used eventually as the space of interpolants to information given on certain
flats determined by X.

We start off with a direction set, as introduced in the preceding section,
i.e., a matrix X with d rows and no null columns. We denote the column
span of X by

ran X.

Recall from (3.3) the polynomial space

P(X ) :=span[lL : L # L(X )] (4.1)

with

lU : t [ `
x # U

(x } t), (4.2)

and

L(X ) :=[L/X : rank(X"L)=rank X]. (4.3)

This polynomial space naturally arises in box spline problems. It reflects in
its structure much of the geometry of the multiset X, and was independ-
ently discovered by several authors ([HS1, J, DR]; some of us regret that
this is the chronological order; see also [DM]).

Now note that lL is a homogeneous polynomial of (exact) degree *L,
and is constant in all directions perpendicular to ran L, i.e., DzlL=0 for all
z = ran L. Since each L # L(X ) can have at most *X&rank X elements, it
is clear that P(X ) is a dilation-invariant subspace of 6*X&rank X (ran X ),
with

6k(M)�6

the subspace of all polynomials of degree �k on Rd that are constant in
all directions orthogonal to the flat M. It is also clear that P(X )=
P(X _ B), with B any basis for a linear subspace complementary to ran X
since L(X )=L(X _ B) for any such B. The dimension of P(X ) is known to
equal the number of submatrices of X that are bases for ran X. For more
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information, see, e.g., [DR]. It is important to note that if X is in general
position (i.e., if every U/X with *U�rank X is 1-1), then the space P(X )
coincides with 6*X&rank X (ran X ).

We are ready for the definition of Ps(X ).

Definition 4.4. Let X be a direction set and let s be an integer. Then

Ps(X ) :=P(X ) 6 (s&d+rank(X ))+
. (4.5)

Note that Ps(X )=P(X ) for s�d&rank(X ), and that the sequence
(Ps(X ) : s=0, 1, 2, ...) is nested, i.e., Ps$(X )�Ps(X ) whenever s$<s.

In the sequel, the following characterization of Ps(X ) will be important
since it shows the characterization of P(5) from [DR] to be applicable
here, and shows that, for Y in general position, P(X _ Y ) only depends on
X and *Y:

Proposition 4.6. Let X and Y be direction sets in Rd, with X _ Y of full
rank, and s :=*Y. Then

P(X _ Y )�Ps(X ),

with equality if (and only if ) Y is in general position with respect to X, i.e.,
no y # Y lies in a proper subspace spanned by elements of (X _ Y )"y.

Proof. Since X _ Y is of full rank by assumption, Y must contain some
basis B for a subspace complementary to ran X. Then X _ B is of full
rank, P(X _ B)=P(X ) and s&d+rank(X )=*(Y"B). We may therefore
assume without loss that already X is of full rank, hence

Ps(X )=P(X ) 6s .

Given L # L(X _ Y ), we let k :=*(L & Y ). Then the rank-d matrix
(X _ Y )"L contains exactly s&k elements from Y, and thus rank(X"L)�
d&(s&k). Since rank X=d, there exists Z/L & X with *Z�s&k such
that rank((X"L) _ Z)=d. Now,

lL=lL"(Y _ Z)l(L & Y ) _ Z , (4.7)

and we have that *((L & Y ) _ Z)�k+(s&k)=s, hence l(L & Y ) _ Z # 6s .
At the same time, L"(Y _ Z) is a subset of X, and its complement in X is
(X"L) _ Z which is known to be of full rank. This means that L"(Y _ Z) #
L(X ), and therefore lL"(Y _ Z) # P(X ). Consequently, we infer from (4.7)
that lL # P(X ) 6s . This being true for every L # L(X _ Y ), we conclude
that a spanning set for P(X _ Y ) lies in Ps(X ), and hence
P(X _ Y )/Ps(X ).
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For the converse inclusion, let L # L(X ), and let B/(X"L) be a basis for
Rd (i.e., a square invertible d_d matrix) The existence of such a B is
guaranteed by the definition of L(X ) and our assumption that rank X=d.
Let Z :=B _ Y. Then *Z=s+d, and, by our assumption on Y, Z is in
general position, hence P(Z)=6s . This implies that, given an element of
the form lLq with q # 6s , we are able to write this polynomial in the form

lLq= :
L$ # L(B _ Y )

cL$lL _ L$

for certain scalars cL$ . Each L _ L$ in this sum lies in L(X _ Y ) since
(X _ Y )"(L _ L$)#(B _ Y )"L$, and the latter is of rank d because
L$ # L(B _ Y ). Consequently, lLq # P(X _ Y ), and we have thus proved
that a spanning set for Ps(X ) lies in P(X _ Y ), and hence Ps(X )/
P(X _ Y ).

Finally, the ``only if '' assertion follows from the above proof and the
known formula for the dimension of P(X ) as follows. Suppose that Y is not
in general position with respect to X, and let Z be a set of s directions that
is in general position with respect to X. Then, X _ Z contains more bases
than does X _ Y. Since this basis count determines the dimension of the
corresponding P-space, it follows that dim P(X _ Y )<dim P(X _ Z).
However, we proved above that P(X _ Z)=Ps(X ), whence the desired
conclusion. K

5. THE INTERPOLATION PROBLEM: THE SIMPLE CASE

Recall that we introduced the direction set X as a sequence or matrix of
normal vectors, one for each of the hyperplanes

Hx :=[t # Rd : x } t=*x], x # X,

in the given sequence H, with suitable constants *x # R. These constants
will be held fixed throughout the discussion. With s # [d&rank(X ), ..., d&1]
fixed, we wish to interpolate to polynomial information given on the
collection

Ms(X ) :={ ,
x # U

Hx : U/X, rank U=d&s= (5.1)

of all flats of dimension s that can be expressed as the intersection of hyper-
planes from (Hx : x # X ). Note that we have now switched, from the
notation Ms(H) to the (less precise) notation Ms(X ). Since the hyperplanes
(Hx : x # X ) depend on (*x : x # X ), so does the set Ms(X ), but we have
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suppressed the * subscript here, as we did with Hx , since these constants
are being held fixed throughout. However, we will write

Ms, 0(X )

instead of Ms(X ) when we want to stress the fact that all hyperplanes
contain the origin, i.e., in the determination of these s-dimensional flats, all
*x were chosen to be zero.

For each M # Ms(X ), we consider the following subset X M of X,

XM :=(x # X : M/Hx). (5.2)

By the definition of Ms(X ), rank XM=d&s, and thus *XM�d&s.

Definition 5.3. Let X, *=(*x : x # X ), and Ms(X ) be as above. We
call the pair (X, *) simple if each M # Md&rank X (X ) is contained in no more
than rank X hyperplanes from H, i.e., if *XM=rank X for each such M.
In that case, we also call the corresponding interpolation problem simple.

For instance, in the example in Section 2, the Cases 1.1�1.3 are simple,
while the Cases 2.1�2.4 are not. Note that Md&ran X (X ) is just the pointset
M0(X ) in case X is of full rank and has at least d columns. In other words,
if rank X=d, then simplicity means that each % # M0(X ) is the intersection
of exactly d hyperplanes in H.

For the rest of this section, we assume that our interpolation problem is
simple. Note that this assumption is entirely on the constants (*x : x # X )
and not on the matrix X.

We now assume that, with each flat M # Ms(X ), we are given a polynomial
pM on M, i.e., the restriction p|M of some p # 6, and it is this polynomial
information we hope to match by some element of Ps(X ). We will not be
able to accomplish this unless

pM # Ps(X )|M . (5.4)

Surprisingly, this simple necessary condition for the existence of a solution
to our problem (along with the obvious consistency condition discussed
below) is also sufficient, leading to the following.

Definition 5.5. The data ( pM : M # Ms(X )) are termed X-compatible if
(5.4) holds for every M # Ms(X ).

We now take time out to study this notion of compatibility in some depth.
The analysis of our interpolation problem is resumed after Proposition 5.8.
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In order to characterize X-compatible data and for later use, we next
prove that, on M, Ps(X ) coincides with P(ZM) for a certain direction set
ZM . The construction of ZM involves the orthogonal projector

PM

onto the linear subspace M&M parallel to the flat M. Explicitly,

ZM :=PM(Z"ZM) _ BM ,

with

Z :=X _ Y, (5.6)

with Y an arbitrary s-set of directions in general position with respect to
X, and with BM any basis from ZM for the orthogonal complement

M= :=[t # Rd : t = (M&M)]

of M in Rd. Having made appropriate choices for Y and BM , we now keep
them fixed for the remainder. Note that, necessarily, P(ZM)/6(M). The
exclusion of ZM is needed since PM maps all of ZM to 0. Here is the
relevant formal statement and its proof.

Lemma 5.7. Let Z be a direction set, and let M # Ms(Z). Then

P(Z)|M=P(ZM)| M .

In particular, with Y an s-direction set in general position with respect to X,

Ps(X )| M=P((X _ Y )M)|M , \M # Ms(X ).

Proof. The map

L [ L� :=PM(L"ZM)

carries L(Z) onto L(ZM). Indeed, PM carries a spanning set of Rd to a span-
ning set of M&M, hence PM(Z)"L� =PM(Z"L) spans M&M. Then
PM(Z"ZM)"L� spans M&M, too, since it differs from PM(Z"L) by
PM(ZM)=[0]. Since ZM "L� =PM(Z"L) _ BM , and since BM spans M =,
we conclude that L� # L(ZM).

To show that the map is onto, let K # L(ZM). Since ZM contains exactly
d&s elements (viz., the elements of BM) not contained in the s-dimensional
M&M, and since ZM"K spans Rd, K must be disjoint from BM . Hence K
lies in PM(Z"ZM). In particular, K=PM(L) for some L/Z"ZM. On the
other hand, ZM "K spans Rd, and is the union of BM and PM(Z"ZM)"K.
Therefore, since rank(BM)=d&s, we have that rank(PM(Z"ZM)"K)�s,
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a fortiori rank(Z"(ZM _ L))�s. It easily follows then that rank(Z"L)=d,
hence that L # L(Z).

With this, let L # L(Z) and consider lL on M. If t # M, then

lL(t)= `
x # L

(x } t)= `
x # L

((PMx) } t+(x&PMx) } t),

and cx :=(x&PMx) } t is a constant on M. This shows that, on M, lL

agrees with some scalar multiple of the function f: t [ >x~ # L� (x~ } t+cx),
and, since L� # L(ZM), such f is in P(ZM) (as a linear combination of poly-
nomials of the form lK , K # L(X )). Consequently, P(Z)|M �P(ZM)|M . The
converse containment is obtained in an analogous way.

The second equality in the lemma is a consequence of the first and of
Proposition 4.6. K

We recall from [BDR, (2.22)] that, for a full-rank direction set 5, p # 6
is in P(5) iff, for every 1�r�d and every N # Mr, 0(5) and every t # Rd,

deg ( p| t+N)�*(5"N=)&r.

After identifying the datum pM given on M # Ms(X ) with its unique exten-
sion to an element of 6(M)/6, we therefore obtain, with the aid of
Lemma 5.7, the following.

Proposition 5.8. The data ( pM : M # Ms(X )) are X-compatible if and
only if, for r�s and every N # Mr, 0(ZM) and every t # M&M,

deg ( pM | t+N)�*(ZM"N=)&r=*(XM "N=)+s&r.

We now resume the discussion of our interpolation problem. We want to
interpolate all the data ( pM : M # Ms(X )) by some p # Ps(X ), hence must
ensure also that these data are consistent enough to guarantee the existence
of a smooth interpolant at least locally. These conditions, which we refer
to as ``the consistency conditions'', are very natural and simple in the
present case.

Definition 5.9. We say that the data ( pM : M # Ms(X )) are consistent
if, for every M1 , M2 # Ms(X ), the polynomials pM1

and pM2
coincide on

M1 & M2 & M0(Z) (with Z as in (5.6)).

Theorem 5.10. Assume that (X, *) is simple, and let ( pM : M # Ms(X ))
be consistent and X-compatible data. Then there exists exactly one p # Ps(X )
that interpolates these data, i.e., that satisfies

p|M= pM , \M # Ms(X ).
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If s=0, then the information is given at points. In this case,
Ps(X )=P(X ), and both the consistency and compatibility conditions are
vacuous. Thus, for the case s=0, our theorem reads as follows:

Theorem 5.11 [DR]. Any data given on the pointset M0(X ) is
interpolated by a unique element in P(X ).

The existence part of this theorem can be easily proved by finding in
P(X ) Lagrange polynomials for the data, i.e., polynomials that vanish at
all points in M0(X ) but one. The uniqueness is harder and can be proved
by showing that dim P(X )=*M0(X ). We omit all these details since
Theorem 5.11 has already been proved in [DR]; it is a special case of
Theorem 7.1 there, which covers also the general case for s=0, Theorem 7.4,
here. The construction of the Lagrange polynomials together with the fact
that these polynomials form a basis for P(X ) is the content of Theorem 4.1
of [DR].

We now reduce the general Theorem 5.10 to the known Theorem 5.11:

Proof of Theorem 5.10. Recall the direction set Y # Rd_s in general
position with respect to X chosen earlier and the notation Z :=X _ Y, and
the fact that, by Proposition 4.6, Ps(X )=P(Z). We associate with each
y # Y a constant *y such that also M0(Z) is simple, i.e., such that exactly
d hyperplanes Hz , z # Z, contain a given point % # M0(Z). Our proof then
proceeds in two steps: the first one, we already took in Section 3, where we
used the assumed consistency to show that the given information
( pM : M # Ms(X )) determines uniquely data values (a% : % # M0(Z)), and
then invoked Theorem 5.11 to find exactly one p # P(Z)=Ps(X ) that inter-
polates these data, thus concluding uniqueness of the interpolant. In the
second step, we show that, for every M # Ms(X ), the fact that the inter-
polant p coincides with pM on M & M0(Z) implies that p= pM on all of M,
thus showing existence of the interpolant.

Here are the details for that second step.
To prove the existence, we fix M # Ms(X ) and wish to show that the

interpolant p coincides on M with pM . Now, pM and p|M agree on
M0(Z) & M, and both are in P(Z)|M (the former by the assumed X-com-
patibility and the latter by construction), while P(Z)|M=P(ZM)| M , by
Lemma 5.7. Further, by Theorem 5.11 (easily applied to the current situa-
tion by an affine change of variables), the space P(ZM) contains a unique
interpolant to arbitrary data at the point set M� (ZM), with the tilde indicat-
ing that the zero-dimensional flats are constructed from hyperplanes
Hx~ =[t : qx~ (t)=0], x~ # ZM , and the corresponding constant *x~ in the
linear polynomial qx~ : t [ x~ } t&*x~ chosen in such a way that qx~ agrees on
M with the polynomial qx , as is done in the proof of Lemma 5.7. Thus, we
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can conclude that p|M= pM (and so declare Theorem 5.10 proved), once
we prove that

M0(Z) & M=M� 0(ZM). (5.12)

For this, % # M� 0(ZM) iff the submatrix Z%
M of all directions x~ # ZM with

% # Hx~ contains a basis for Rd. Any basis in ZM necessarily contains the
basis BM for M=, hence M� 0(ZM)/M. For any other element x~ of such a
basis, we have Hx~ & M=Hx & M, by the construction of Hx~ just detailed,
hence % also lies in the corresponding Hx . Consequently, M0(Z) & M#

M� 0(ZM).
Conversely, % # M0(Z) & M iff the submatrix Z% of all directions x # Z

with % # Hx contains some basis B for Rd and, within that basis, a basis for
M= taken from XM. For any element x # B"X M, qx=qx~ on M, hence
% # M� 0(ZM). This finishes the proof of (5.12) and, thereby, the proof of the
theorem. K

6. SOME FACTS ABOUT POLYNOMIALS

Some of the theorems (in the next section) that are needed for proving
our main result make claims of the form

F/G, (6.1)

with both F and G a polynomial space (i.e., a linear subspace of 6), but not
necessarily of finite dimension nor of finite codimension. However, in all
cases of interest to us, the spaces F and G are D-invariant i.e., invariant
under differentiation in any direction, hence invariant under any constant-
coefficient differential operator p(D) :=�: (D:p(0)�:!) D:, taken as a map
on 6, with D: :=>d

i=1 D:(i)
i , and D i differentiation with respect to the ith

argument.
For D-invariant F and G, one may try to prove the inclusion F/G by

inspecting the constant-coefficient differential operators that annihilate
these spaces, since, for an arbitrary subset G of 6, the set

IG :=[ p # 6 : G/ker p(D)]

is an ideal (hence has a finite generating set) and, further,

G/ker IG := ,
p # IG

ker p(D)= ,
p # G0

ker p(D)

329POLYNOMIAL INTERPOLATION



for any generating set G0 for IG , with equality if and only if G is a co-ideal,
i.e., a D-invariant polynomial space that is closed in the weak topology
induced by the pairing

6_6: ( p, q) [ (p, q) :=:
:

D:p(0) D:q(0)�:!.

Hence, if G is a co-ideal, then we can conclude (6.1) as soon as we know
that, for all p in some generating set for the ideal IG , p(D) annihilates F.
For, then we know that IG /IF , hence

F/ker IF /ker IG=G.

In our particular applications, G will be a homogeneous polynomial
space, i.e., is spanned by homogeneous polynomials (or, equivalently, is
invariant under dilations). For that case, we have the following simple, yet
very useful, observation:

Proposition 6.2. Any sum of homogeneous D-invariant polynomial
spaces is a co-ideal.

Proof. Since the sum of homogeneous D-invariant polynomial spaces is
also homogeneous and D-invariant, we need only to prove the case when
there is a single summand, F, in the sum.

Since we assume that F is D-invariant, we need only to prove that it is
closed. Let ( fn) be a sequence in F weakly convergent to f # 6. Then f # 6k

for some k and so, necessarily, already

f [k]
n =: :

|:|�k

D:fn(0)
:!

( ):

converges weakly to f, while, by the homogeneity of F, each f [k]
n is in the

finite-dimensional space F & 6k , hence so must f be. K

We conclude this section with two further simple observations of use in
the next section.

Proposition 6.3. Let F and G be co-ideals, with IG=I(1), and let
p # 6. Then, p # F+G if and only if there exists f # F so that, for all # # 1,
#(D)( p& f )=0.

For our last statement, let M be a flat in Rd and recall our notation PM

for the orthogonal projector onto M&M. Then,

Dy p=DPMy p, \y # Rd, \p # 6(M). (6.4)
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Indeed, since p # 6(M) is constant in all directions perpendicular to M, we
have Dy&PMy p=0.

In particular, Dy maps 6(M) onto itself unless PMy=0, i.e., unless
y # M=. Since Dy(qp)=(Dy q) p+q(Dyp), this implies (by induction on
deg q) the following

Proposition 6.5. For any flat M in Rd, any y # Rd"M=, and any
D-invariant linear subspace F of 6,

Dy(F6(M))=F6(M).

7. THE INTERPOLATION PROBLEM: THE GENERAL CASE

The basic set-up in the general case is the same as in the simple case: we
are given the direction set X and the constants (*x : x # X ) and want to
interpolate from Ps(X ) to polynomial information given on the flats in
Ms(X ). Only that at this time, we no longer assume simplicity, i.e., while
still for every M # Ms(X ) the set XM (of all vectors whose corresponding
hyperplane contains M) spans M=, there might be more than d&s vectors
in XM, which is to say that the flat M appears with some multiplicity.
Therefore, the initial task is to define precisely the multiplicity notion. This
will eventually determine the type of interpolation conditions we expect to
satisfy.

Before embarking on the precise definition of ``multiplicity'' here, we
make the following simple count: suppose that M # Ms(X ) is given and
assume that XM contains more than d&s vectors. In this case, the inter-
polating polynomial should match not only function values given on M but
also some prescribed derivatives on M, i.e., we expect to be given data

( pM, . : . # 8)

consisting of polynomials on M, with 8 some M-dependent polynomial
space that describes the derivatives to be interpolated, in the sense that we
require our interpolant p to satisfy all of the conditions

(.(D) p)|M= pM, . , \. # 8.

Of course, some consistency requirements must be enforced; for example,
it should be assumed that

:pM, .+;pM, �= pM, :.+;� , \., � # 8, \:, ; # C.

331POLYNOMIAL INTERPOLATION



As we will see in a moment, the exact definition of the space 8 is fairly
complicated, but one thing can be observed easily in advance: the dimen-
sion of 8 should be the number of bases for M= that can be extracted from
XM (i.e., the number of submatrices of XM of length and rank d&s). This
is so because this number counts the number of flats in Ms(X ) that have
been merged into the one M while passing from the generic or simple case
to the present general case.

We now define exactly the type of derivatives that should be inter-
polated. For this purpose, we recall the polynomial space D(5) which is
also intimately related to box spline theory:

Definition 7.1. Let 5 be any matrix with d rows. Let K(5) be the
complement of L(5) in 25, i.e.,

K(5) :=[K/5 : rank(5"K)<rank 5]. (7.2)

Then the polynomial space D(5)/6(ran 5) is defined as the joint kernel
of the differential operators on 6(ran 5) induced by K(5):

D(5) :=[. # 6(ran 5) : lK (D) .=0, \K # K(5)]

=ker I(lK : K # K(5))/6(ran 5).

In particular,

D(5)=D(5 _ B)

for any basis B for (ran 5)=.

We are now ready to describe the information to be interpolated: we
assume that the data consist of polynomials

pM, . # 6(M), M # Ms(X ), . # D(X M),

and that the interpolant p should then satisfy

(.(D) p)|M= pM, . , \M # Ms(X ), \. # D(X M).

It may be helpful for the reader to consider briefly the spaces D(XM)
that occur in the example in Section 2. In Cases 1.1�1.3 and 2.1, each XM

has just one column, XM=[x] say, and, correspondingly, K(XM)=
[[x]], hence D(XM)=60 . In Cases 2.2 and 2.3, one of the M has XM=
[x, x] for a certain x, hence now K(XM)=[[x, x]], and therefore
D(XM)=61(ran[x])=span[1, lx]. Finally, Cases 2.4 is quite similar in
that the one and only M has XM=X=[x, x, x], hence D(X M)=span
[1, lx , l2

x] in this case. As we said at the end of Section 2, one needs to go
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to higher dimensions in order to fully appreciate the power of the construct
D(XM).

We postpone the discussion concerning the consistency of the data, but
we can already present our compatibility requirements for the data
with Ps(X ):

Definition 7.3. We say that the given data ( pM, . : M # Ms(X ),
. # D(XM)) are X-compatible if

pM, . # (Ps(X ))|M , \M # Ms(X ), \. # D(XM).

While one might have expected here the stronger condition pM, . #
(.(D) Ps(X ))|M , the given condition turns out to suffice.

So, with the notion of consistency yet to be defined, we assume that we
are given consistent information ( pM, . : M # Ms(X ), . # D(XM)) that is
X-compatible and want to prove the existence and uniqueness of p # Ps(X )
that matches these data. As in the simple case, our solution method is
based on the reduction of this problem to the case s=0 and uses the
known results for this case that were established in Theorem 7.1 of [DR],
as follows.

Theorem 7.4 [DR]. Let 5 be a direction set in Rd, of rank d, and let
(Hx : x # 5) be a corresponding sequence of hyperplanes, each perpendicular
to its associated x. For each % # Rd, let 5% be defined as

5% :=(x # 5 : % # Hx),

and let M0(5) be the set of all % with rank 5 %=d. Then, for every smooth
function f: Rd � C, there exists exactly one p # P(5) that satisfies

.(D) p(%)=.(D) f (%), \% # M0(5), \. # D(5 %).

The smooth function f in this theorem serves only to ensure the
consistency of the data (.(D) f (%) : % # M0(5), . # D(5 %)). We could have
replaced each value .(D) f (%) by a number p%, . and required the
consistency conditions

:p%, .+;p%, �= p%, :.+;� , % # M0(5), ., � # D(5%), :, ; # C,

since these conditions are equivalent to the existence of a smooth
interpolant to the data.

With the aid of Theorem 7.4, we treat the case s>0 as follows: We
assume that Ms(X ) is not empty (since otherwise there is nothing to
prove), i.e., we assume that rank X�d&s, and add to X, as in the simple
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case, s vectors Y that are in general position relative to X, thus obtaining
the direction set

Z :=X _ Y,

of full rank. Since, by Proposition 4.6, Ps(X )=P(Z), we seek our
interpolant from P(Z). Precisely, we will derive from the data
( pM, . : M # Ms(X ), . # D(XM)) uniquely determined data ( p%, . : % #
M0(Z), . # D(Z %)) and show that the unique interpolant in P(Z) to the
latter data (which is provided by Theorem 7.4, with 5=Z) also interpolates
the original data.

Our first step is to derive the information ( p%, � : % # M0(Z), � # DD(Z %))
from the given data ( pM, . : M # Ms(X ), . # D(X M)). Precisely, we think of
each pM, . as specifying (.(D) p)|M , with p being our desired interpolant,
and want to be able to compute from this information the numbers
�(D) p(%) for � # D(Z%) and % # M0(Z).

We fix now % # M0(Z) and proceed as follows: we first remove from
Ms(X ) all flats that do not contain %. The remaining set is easily shown to
coincide with Ms(X %), i.e., the set of s-dimensional flats associated with the
hyperplanes that contain %. The information available to us at % is of the
form

( pM, .(%) : M # Ms(X%), . # D(X M)).

However, since pM, . specifies .(D) p on all of M, we thereby also know
q(D) .(D) p on M for any q # 6(M). This means that the data supply the
number .(D) p(%) for any

. := :
M # Ms (X %)

:
i

.M
i qM

i # :
M # Ms (X%)

D(XM) 6(M),

in the form

.(D) p(%)= :
M # Ms (X %)

:
i

qM
i (D) pM, .i

M (%).

Of course, for this to work, we must be certain that the resulting number
.(D) p(%) is independent of the particular way we are writing . as such a
sum. This leads to the following.

Definition 7.5. We say that the given data ( pM, . : M # Ms(X ),
. # D(XM)) are consistent if, for some Y # Rd_s in general position with
respect to X and for every % # M0(Z) (with Z :=X _ Y ),

0= :
M # Ms (X %)

:
i

.M
i qM

i # :
M # Ms (X %)

D(XM) 6(M)
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implies that

:
M # Ms (X %)

:
i

qM
i (D) pM, .i

M (%)=0.

Note that such consistency is demanded here only at certain finitely
many points, which is very helpful, since an equivalent definition on an
entire intersection of flats seems to be comparatively awkward.

It follows that the original information determines the desired informa-
tion (�(D) p(%) : � # D(Z%)) if and only if

D(Z %)/ :
M # Ms (X%)

D(XM) 6(M). (7.6)

As we now explain, it suffices to establish the above inclusion for the
special case when X %=X, and %=0; Theorem 7.7 below establishes the
inclusion for this seemingly special case. The general case of (7.6) then
follows by the following reasoning.

First, since Z% & X=X %, and since each XM (with M # Ms(X%)) is a sub-
matrix of X% (and not only of X ), the vectors in X"X% play no role here,
hence nothing is lost in assuming X%=X. Second, assuming X%=X, the
map

M [ M&%

maps Ms(X ) 1-1 onto Ms, 0(X ). At the same time, since all the spaces
involved in (7.6) are translation-invariant, nothing is changed there if we
translate them all by %; the only change is that the index set Ms(X )=
Ms(X %) of the summation is replaced by Ms, 0(X ).

Consequently, (7.6) will be proved as soon as we have shown the following:

Theorem 7.7. Let 5 be a direction set in Rd. Let s # [1, ..., d&1], and
let Y be an arbitrary collection of k�s vectors. Then

D(5 _ Y )/ :
M # Ms, 0(5)

D(5 & M=) 6(M). (7.8)

We note that the statement in the theorem is sharp: for example, if 5 _ Y
is in general position and Y contains exactly s vectors, then the inclusion
of (7.8) already ceases to hold if we remove from the right-hand side any
single summand. For, in that case, each D(5 & M=) equals 60 , while, for
any M # Ms, 0(5), p :=l5"M= is of exact degree *5+s&d, hence p(D) fails
to annihilate D(5 _ Y )=6*5+s&d , yet it annihilates all the summands in
the right-hand side except 6(M).
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On the other hand, the two sides in (7.8) are never equal since the left
side is contained in 6*5+s&d while the right side contains polynomials of
arbitrarily high degree.

In order to prove the theorem, we observe that both sides of (7.8) are co-
ideals, the right side by Proposition 6.2. The claim of the theorem follows
then from the fact (about to be established) that the ideal that determines
the right-hand side of (7.8) is contained in the ideal that determines the
left-hand side.

As a matter of fact, D(5 _ Y ) is defined as the kernel of the ideal

I(lK : K # K(5 _ Y )).

Since the space D(5 _ Y ) gets larger with increasing Y, we will assume
without loss that *Y=s. On the other hand, the following theorem asserts
that the right-hand side of (7.8) is the kernel of the ideal I(lK : K/5,
rank(5"K)<d&s). Since Y has only s elements, each such K is in
K(5 _ Y ). Thus, the next theorem provides a proof for (7.8).

Theorem 7.9. Let 5 be a direction set in Rd, let s be a non-negative
integer �d, and let

Ks(5)

be the collection of all K/5 that are minimal with respect to the property
that rank(5"K)<d&s. Then

:
M # Ms, 0(5)

D(5 & M =) 6(M)= ,
K # Ks (5)

ker lK (D)=: Ds(5). (7.10)

Proof. We note that, necessarily, rank(5"K)=d&s&1 for all K # Ks(5),
and that K0(5) consists of all minimal elements of K(5), hence

D(5)=ker I(lK : K # K0(5))=D0(5).

Also, both sides of (7.10) are co-ideals (the left side by Proposition 6.2),
hence their equality is equivalent to the equality of their corresponding
ideals.

As a warm-up, we prove the simpler inclusion in (7.10) by showing that
each of the operators lK (D) in (7.10) annihilates the left-hand side of
(7.10). Indeed, if K # Ks(5) and M # Ms, 0(5), then 5"K has rank<d&s=
rank 5 & M=, therefore (5 & M=)"(K & M=) has rank<rank(5 & M=),
i.e., K & M= # K(5 & M=). But since, for every q # 6(M) and any
x # 5 & M=, lx(D)( pq)=(lx(D) p) q, this shows that lK & M=(D) annihilates
every pq with p # D(5 & M=) and q # 6(M), hence annihilates all of
D(5 & M=) 6(M); a fortiori, that latter space is annihilated by lK (D).
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We now prove the converse. First, if rank 5<d&s, then Ms, 0(5)=[ ]
and also Ks(5)=[ ], hence both sides of (7.10) are [0]. We settle the
contrary case by induction on *5�d&s. If *5=d&s, then Ds(5)=
�x # 5 ker Dx , and hence indeed Ds(5)=60(M), with M :=5 = the single
element of Ms, 0(5).

Assume now that the statement of the theorem holds for 5, and let

Z :=5 _ [ y].

Assume that .(D) annihilates �M # Ms, 0(Z) D(Z & M=) 6(M). Since this
sum contains the left-hand side of (7.10), the induction hypothesis implies
that . # I(lK : K # Ks(5)), i.e.,

.=: :
K # Ks (5)

lK �K ,

where (�K) are some polynomials. We need to show that . # I(lU : U #
Ks(Z)). We do this by showing that

lK0
�K0

# I(lU : U # Ks(Z))

for every K0 # Ks(5).
Here is the way the proof goes. If K0 # Ks(Z), there is nothing to prove.

Otherwise, (5"K0) _ [ y] is of rank d&s. Let M # Ms, 0(Z) be the subspace
perpendicular to (5"K0) _ [ y]. We will show below that �K0

(D)
annihilates D((5"K0) _ [ y]) 6(M), hence (see the proof of Proposition 6.2)
�K0

# I(lK : K # K((5"K0) _ [ y])).
The desired result follows from this since, for any K # K((5"K0) _ [ y]),

Z"(K0 _ K)=((5"K0) _ [ y])"K, with the latter matrix of rank<d&s,
therefore some submatrix of K0 _ K lies in Ks(Z). Hence, lK0

�K0
lies in the

ideal generated by [lU : U # Ks(Z)] which is exactly what we had to prove.
It remains to prove that �K0

(D) annihilates D((5"K0) _ [ y]) 6(M). For
this, we observe that

Z & M=
#(5"K0) _ [ y]=(Z & M =)"K0 .

By assumption, �K # Ks (5) lK (D) �K (D) annihilates D(Z & M=) 6(M). In
addition, there are certain terms in this sum that already annihilate
D(Z & M=) 6(M) (without any ``aid'' from other terms): if K # Ks(5), then
rank(5"K)=d&s&1, hence (5"K)/3 M= implies that rank((5"K) & M=)
<d&s&1. Therefore, for such K, ((5"K) _ [ y]) & M= is of rank<d&s
and, since this last matrix is (Z & M=)"K, we conclude that K & M= #
K(Z & M=) which means that lK & M=(D) annihilates D(Z & M =) and hence
annihilates D(Z & M=) 6(M). Thus, for such K, the operator lK (D) �K (D)
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annihilates D(Z & M=) 6(M), and consequently, the sum of the rest of the
summands annihilates this space as well.

Thus, with

KM
s :=[K # Ks(5) : (5"K)/M=],

we know that

:
K # Ks

M
(lK�K)(D)

annihilates D(Z & M=) 6(M). We also know that our original K0 is in
KM

s . Also, (Z & M=)"(K0 & M =)=(Z & M =)"K0=(5"K0) _ [ y]. This
makes the following map interesting for us.

Identifying M= with Rd&s, we define

L: D(Z & M=) � X
K # Ks

M
D((Z & M=)"(K & M=)) :

p [ (lK & M=(D) p : K # KM
s ).

Note that by varying K over KM
s , we actually vary K & M= over all mini-

mal submatrices of 5 & M= whose complement in 5 & M= does not span
M= any more. I.e., [K & M= : K # KM

s ]=K0(5 & M=). Thus, by [DM,
Theorem 3.2] (a complete proof of which can be found, e.g., in [BRS]),
the map L is onto, and therefore, for our K0 there exists F/D(Z & M =)
such that lK & M =(D) F=0 for K # KM

s "[K0] but lK0 & M=(D) F=
D((Z & M=)"K0). Thus, for K # KM

s "[K0],

lK (D) �K (D)(F6(M))=lK"M=(D) �K (D)((lK & M =(D) F ) 6(M))=[0],

and so,

[0]=: lK (D) �K (D)(D(Z & M =) 6(M))$: lK (D) �K (D)(F6(M))

=lK0
(D) �K0

(D)(F6(M))=lK0"M =(D) �K0
(D)((lK0 & M=(D) F ) 6(M))

=�K0
(D)(lK0"M =(D)(D((Z & M=)"K0) 6(M)))

=�K0
(D)(D((Z & M=)"K0) 6(M)),

the last equality since, by Proposition 6.5, lY (D) is a surjective
endomorphism on every space of the form F6(M), with F a D-invariant
polynomial space, provided that Y & M==[ ]. Noting that (Z & M =)"K0

is exactly our old (5"K0) _ [ y], we have proved what we wanted to. K
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Now, we finally know that the information required for solving the inter-
polation problem related to M0(X _ Y ) is uniquely determined by the
original data. Thus, by Theorem 7.4, there exists a unique polynomial in
Ps(X )=P(X _ Y ) that interpolates all the information at the points. This
already implies the uniqueness of the solution to our original data.

It remains to show that this interpolant p to the pointwise data matches
also the original data on Ms(X ). Fixing M # Ms(X ), we begin by showing
that p|M= pM , and do this by applying Theorem 7.4 to the situation on M,
i.e., use, as in the simple case, the coincidence of P(Z) and P(ZM) on M
(see Lemma 5.7) to conclude that p|M= pM from the fact that p| M

``matches'' pM at each % # M0(Z) & M=M� 0(ZM) (see (5.12)) in the sense
that

.(D)( p|M& pM)(%)=0, \. # D(Z%
M),

and, assuming consistency, this will be so provided D(Z%
M)/D(Z%). The

next lemma, applied to 5=Z%, proves this containment.

Lemma 7.11. Let 5 be a direction set of rank d. Let M # Ms(5), let PM

be the orthogonal projector onto M&M, and let

5M :=PM(5"M =).

Then,

D(5M)/D(5). (7.12)

Proof. Since D(5) is the joint kernel of [lK (D) : K # K(5)], it suffices
to show that each lK (D), K # K(5), annihilates D(5M). If K & (5 & M =)
{[ ], then this is obvious since in such a case lK (D) annihilates all of
6(M) and in particular its subspace D(5M). Otherwise, 5 & M=/5"K,
and therefore PM(5"K) cannot be of rank s (to avoid the contradictory
conclusion that 5"K is of rank d, which contradicts the assumption
K # K(5)). We thus conclude that PMK # K(5M), which implies that
lPM K (D) D(5M)=[0]. But since D(5M)/6(M), there is no difference
between the action of lK (D) and lPMK (D) on D(5M). Consequently,
lK (D) D(5M)=[0]. K

To finish the general case, we also have to show that, for each
. # D(XM), .(D) p|M= pM, . . This we prove by induction on j :=deg .
(having just settled the case j=0), with the aid of the following theorem
(which we mean to apply with 5=X%=Z%, hence 5 & M==XM).
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Theorem 7.13. Let 5 be a direction set of rank d. Let M # Ms(5), let
PM be the orthogonal projector onto M&M, and set

5M :=PM(5"M =).

Then, for every non-negative integer j,

(D(5 & M=) & 6j) D(5M)/D(5)+(D(5 & M =) & 6j&1) 6(M).

(7.14)

Proof. The case j=0 is just Lemma 7.11. The case j>0 is proved with
the aid of differential operators, as we did in earlier proofs. Specifically,
both spaces on the right-hand side of (7.14) are co-ideals (as both are
homogeneous). Therefore, we are entitled to use Proposition 6.3 for the
proof of (7.14). We start by identifying a generating set for the associated
ideal of the second summand in the right hand side of (7.14).

Lemma 7.15. Let Y # Rd_n be a matrix of rank d. Then D(Y ) & 6j&1 is
the kernel of the ideal generated by the union Gj :=GK

j _ GL
j of the two sets

GK
j :=[lK : K # K(Y ), *K� j], GL

j :=[lL : L # L(Y ), *L= j].

Proof. It is clear that Gj generates all of [lK : K # K(Y )]: if *K� j,
then lK appears in GK

j ; otherwise, a factor of it appears in GL
j . Therefore,

ker I(Gj)/D(Y ).

On the other hand, it is clear that D(Y ) & 6j&1 lies in ker I(Gj), since
GK

j (D) annihilate D(Y ), and GL
j (D) annihilate 6 j&1 .

Thus, we only need to show that ker I(Gj)/6 j&1 , or, in other words,
that Gj generates all of 6 0

j . For this, observe that ID(Y )+P(Y )=6. Since
both summands are homogeneous, (ID(Y ) & 6 0

j )+(P(Y ) & 6 0
j )=6 0

j . But,
GK

j generates ID(Y ) & 6 0
j and GL

j spans P(Y ) & 6 0
j , whence the desired

conclusion. K

Corollary 7.16. The ideal whose kernel is (D(5 & M=) & 6j&1) 6(M)
is generated by Gj :=GK

j +GL
j , with

GK
j :=[lK : K # K0(5 & M=), *K� j] and

GL
j :=[lL : L # L(5 & M=), *L= j].

Combining this corollary with Proposition 6.3, we see that our
Theorem 7.13 follows from the following claim:
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Proposition 7.17. Let Gj be as in the preceding corollary. Then, for
every p # (D(5 & M=) & 6j) D(5M), there exists f # D(5) such that

lZ(D)( p& f )=0, \lZ # Gj .

Proof. Let

P5

be the projector of 6 onto D(5) with respect to P(5). Namely,

.(D)( p&P5p)(0)=0, \. # P(5), \p # 6.

This projector exists (and is unique) because of the duality between D(5)
and P(5). It is proved in [DR] (cf. Section 6 there) that for every Y/5
we have

lY (D)P5=P5"YlY (D).

Now let p # (D(5 & M=) & 6j) D(5M) and choose q :=P5 p # D(5). Let
lZ # Gj ; then, in particular, Z/5 & M =/5, and hence, by the above,

lZ(D)( p&q)=lZ(D)p&P5"Z(lZ(D)p). (7.18)

We will show now that, whatever lZ # Gj was chosen, lZ(D) p # D(5"Z).
Since P5"Z is the identity on D(5"Z), (7.18) will then imply that
lZ(D)( p& f )=0.

Whatever Z we did choose, Z/M=, and hence

lZ(D)(D(5 & M =) 6(M))=(lZ(D) D(5 & M =)) 6(M).

If Z # K(5 & M =), then lZ(D)p=0 # D(5"Z). Otherwise, lZ # GL
j and

hence *Z= j, and therefore lZ(D)(D(5 & M =) & 6j)/60 . Consequently,
lZ(D)p # D(5M)/D(5"M=)/D(5"Z), the middle inclusion by virtue
of the proven j=0 case of the theorem. This completes the proof of
the present proposition, and thereby completes the proof of the whole
Theorem 7.13. K

With this, we have almost proved the following main result of this paper.

Theorem 7.19. Let X be a direction set in Rd, and let (Hx : x # X ) be a
corresponding sequence of hyperplanes, each perpendicular to its associated
x. For a fixed s # [0, ..., d&1], let there be given consistent (see Definition 7.5)
and X-compatible (see Definition 7.3) data ( pM, . : M # Ms(X ), . # D(XM)).
Then, there exists exactly one p # Ps(X ) that satisfies

(.(D) p)|M= pM, . , \M # Ms(X ), \. # D(X M).
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Proof. The only thing still not proved is the claim that the (unique)
interpolant p # P(X _ Y ) to the data

( p%, � : % # M0(X _ Y ), � # D((X _ Y )%))

(derived with the aid of Theorem 7.7, as explained before) satisfies

.(D)p|M= pM, .

for all . # D(XM) and all M # Ms(X ). We prove this by induction on
j :=deg ., the case j=0 having already been settled.

Consider . # D(XM) of degree j. Since p # Ps(X ), so is .(D)p, hence
.(D)p|M # Ps(X )|M , while pM, . # Ps(X )|M by the assumed X-compatibility
of the data. By Theorem 7.4 and Lemma 5.7, it is therefore sufficient to
prove that

�(D)(.(D)p|M& pM, .)(%)=0, \% # M0(Z) & M, \� # D(Z%
M).

By Theorem 7.13, any such �. is expressible as a finite sum

�.=�0+:
i

. i�i ,

with �0 # D(Z%) and .i # D(ZM) & 6 j&1 , � i # 6(M), all i. By Theorem 7.7,

�0= :
N # Ms, 0(Z%)

:
i

.N
i �N

i

for some .N
i # D(Z & N=), �N

i # 6(N), and, by construction of p,

�0(D)p(%)= :
N # Ms, 0(Z %)

:
i

�N
i (D)pN, .N

i
(%).

Therefore,

�(D) .(D)p(%)=\�0(D)+:
i

.i (D) �i (D)+ p(%)

= :
N # Ms, 0(Z %)

:
i

�N
i (D)pN, .i

N (%)+:
i

�i (D)pM, .i
(%)

=�(D)pM, .(%),

the second equality by induction hypothesis and the last equality by the
assumed consistency of the data. K
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